291

Scanner generation for modular regular grammars

P. Klint
Department of Software Technology, Centre for Mathematics and Computer Science
Programming Research Group, University of Amsterdam

When formal language definitions become large it may be advantageous to di-
vide them into separate modules. Such modules can then be combined in vari-
ous ways, but this requires that implementations derived from individual
modules can be combined as well. In this paper we address the problem of
combining regular grammars appearing in separate modules and of combining
the lexical scanners generated for them.

Dedicated to J.W. de Bakker on the occasion of the 25th anniversary of his as-
sociation with the Centre for Mathematics and Computer Science.

Key Words & Phrases: program generator, generation of lexical scanners, modular regular
grammars, finite automata, subset construction.

1987 CR Categories: D.1.2 [Programming Techniques): Automatic programming; D.3.4
{Programming Languages]: Processors.

1985 Mathematics Subject Classification: 68N20 {Software]: Compilers and generators.

1. INTRODUCTION

The benefits of dividing complex systems into several, smaller, modules are well-known.
Apart from a reduction in complexity that can be achieved for individual modules, one also
introduces the possibility of re-using a module several times. In this paper we will apply
the idea of modular decomposition to the definition of formal languages (such as, e.g.,
programming languages and specification languages), and concentrate on lexical syntax,
one of the syntactic aspects that have to be defined for a language. Typically, the lexical
syntax defines comment conventions, layout symbols, and the form of identifiers, key-
words, delimiters, and constants (e.g. numbers, strings) in a language. The standard
method is now to use a regular grammar to specify the precise form of the various elements
in the lexical syntax and to compile this regular grammar into a deterministic finite state au-
tomaton (DFA) to be used for the actual reading of program texts.

Here, we are interested in the problem of how the lexical syntax can be subdivided in
separate modules and how DFAs can be obtained from various combinations of these
modules. The motivation for this problem comes from two different sources:

® In a setting where definitions for more than one language are being developed, it is

natural to construct a set of standard modules defining frequently used notions (e.g.,
identifiers, floating point numbers, or string constants). Of course, these standard
notions may sometimes need adaptation depending on their use (e.g., the letters

292

Abbreviations:
Ml: <DIGIT> =0 | 1 | |7
M2: <DIGIT> =8 | 9
M3: <LETTER> a | b | | 2z
Rules:
M4: <INT> = <DIGIT>+
M5: <REAL> = <INT> "." <INT>
M6: <ID> = <LETTER> (<LETTER> | <DIGIT>)*
M7: <KW> = if
M8: <KW> = end

Figure 1. A modular regular grammar.

appearing in identifiers may or may not contain both lower case letters and upper case
letters, integer constants may or may not contain hexa-decimal digits).

° In modular specification languages that allow user-definable syntax to be introduced
in each module, the composition of modules requires, among others, the composition
of lexical syntax.

The flexibility we want to achieve can best be illustrated by an example. Consider the
grammar shown in Figure 1. It consists of two parts: abbreviations and rules. The ab-
breviations part defines named regular expression to be used in the rules part. When several
regular expressions e; are associated with one name, we associate with that name a regular
expression containing all expressions ¢; as alternatives. The actual regular grammar is de-
fined in the rules part. Names appearing in rules can be completely eliminated by textual
substitution. The names of rules define the token-name to be associated with a string rec-
ognized by that particular rule. Note that more than one rule may recognize the same string;
in that case we associate more than one token-name with it.

In the example, we define a lexical syntax containing integer constants, real constants,
identifiers and the keywords if and end. Each regular expression in the grammar is la-
belled with a module name. In general, several expressions may be labelled with the same
name, but in this example we have the extreme case that every expression is labelled with a
different name. The use of this modular regular grammar is shown in Figure 2. Given a list
of selected module names, only those rules are to be used whose module name appears in
the selection. For each selection of modules, the modular regular grammar thus corre-
sponds to a (probably) different ordinary regular grammar.

An implementation of modular regular grammars should, clearly, have the following two
properties:

® The time needed to construct a DFA for a given selection of modules (in the modular
case) should be significantly less than the time needed to construct the automaton
from scratch (in the non-modular case) using only the rules from the selected mod-
ules.

* The efficiency of the DFA generated in the modular and in the non-modular case
should be comparable.

293

modules selection selection selection selection
D (2) 3)]
M1 ® b4 X X
M2 b4] x X
M3 b3 X X X
M4 X x [o} b.4
MS x X X X
M6 b4 x x o
M7 X b:4 x b:4
M8 X [o] x b
sentences recognized recognized recognized recognized
as as as as
123 <INT> <INT> - <INT>
678 <INT> - - <INT>
2.8 <REAL> - - <REAL>
abe <ID> <ID> <ID> -
end <ID>, <KW> <ID> <ID>, <KW> <KW>
xy9 <ID> - <ID> -

Figure 2. Examples of module selections.

How can modular regular grammars now be compiled into DFAs? There are two, funda-
mentally different, solutions to this problem:
® Compile all rules that are labelled with the same module name into a single DFA and
define a composition operation on DFAs. The DFA constructed for a certain selection
of modules then consists of the composition of the DFAs constructed for each indi-
vidual module in the selection.
® Compile all rules into a single DFA and define a selection operation that, given a list
of selected modules, extracts the sub-automaton that corresponds to that selection.
Obviously, the first solution is the most elegant one since it leads to a truly modular imple-
mentation of lexical scanners. Unfortunately, the composition operation on deterministic
automata is expensive: given two DFAs A and B and their composition AUB, in many
cases the states of A and B do not appear in AUB. Instead, they are combined into new
states thus reflecting the interactions between the languages recognized by A and B. As a
result, the computation of AUB requires roughly the same amount of work as the
construction of a completely new automaton. This is illustrated in Figure 3, where the
DFAs for the two regular expressions a b,and (a | c) d are shown together with the
resulting DFA for the combined language {a b, (a | ¢) d} or,equivalently, (a b)
| (ta |) d.]Itshould be emphasized that the complexity of the composition operation
is caused by our (efficiency) requirement that the result of the composition is again a deter-
ministic automaton. Allowing a non-deterministic automaton (NFA) as result, would sig-
nificantly simplify the composition operation as is shown in Figure 4.

294

Regular expression(s) Corresponding DFA
a OO0

a

(a | ¢ d C)—_—':O_dp
(o]

b
a
{ ab, (a |l c)d} 4
c
d

Figure 3. Two DFAs and their composition as DFA.

b
a
{ab, (a | c)d) a
d
c

Figure 4. Same DFAs and their composition as NFA.

In this paper, we now concentrate on the second solution mentioned above and investi-
gate how a selection operation can be defined on a DFA that extracts a sub-automaton
corresponding to a selection of modules.

2. AN ALGORITHM FOR COMPILING REGULAR EXPRESSIONS
In this section we sketch an algorithm for the lazy compilation of regular expressions into

deterministic finite automata. A complete description of this method can be found in
[HKR87b].

2.1. Preliminaries
First, we introduce the notions of regular expression and labelled regular expression.

295

Regular expressions over a finite alphabet £ are composed of the symbols from that al-
phabet, the empty string (€), the operators concatenation (denoted by juxtaposition), alter-
nation (1), repetition (*), and parentheses. We will adopt the convention that parentheses
may be omitted under the assumption that the operators in regular expressions are left
associative and that * has the highest priority, concatenation has the second highest priority
and | has the lowest priority. We will also use the undefined regular expression (1) denot-
ing the empty set of strings, i.e. L does not recognize anything. The following identities
characterize the interactions between concatenation, |, * and L:

(@ rl=1r =1

(b) L*=¢

© ril=1Lir=r

A labelled regular expression is a regular expression in which a unique natural number p
is associated with each occurrence of a symbol ae X. We say that a occurs at position p and
that the symbol at position p is a, notation: ap. Also define symbol(p)=a for each ap,.

We will use some auxiliary functions on labelled regular expressions which describe
properties of the strings recognized by them:

(1) The predicate nullable determines whether a regular expression can recognize the

empty string.

(2) The function firstpos maps a labelled regular expression to the set of positions that
can match the first symbol of an input string.

(3) The function lastpos maps a labelled regular expression to the set of positions that can
match the last symbol of an input string.

(4) The function followpos maps a position in a labelled, regular expressions e to the set
of positions that can follow it, i.e., if p is a position with symbol(p) =a and p
matches the symbol a in some legal input string ...ab..., then b will be matched by
some position in followpos(p, e).

For precise definitions of these functions we refer the reader to [HKR87b] or [BS87].

In the sequel, we will adopt the convention that a unique symbol $& X is used to terminate
both regular expressions and input strings. A terminated, labelled, regular expression e
over an alphabet X, has the form e'$, where ¢’ is a labelled regular expression over 2\{$}.

An accepting sequence of positions for a labelled regular expression e can now be defined
as a sequence of positions p1,...,p, such that pyefirstpos(e), ppe lastpos(e), and pj; 1
€ followpos(p;, €), i=1,...,n—1. For all strings s € ¥* and for all terminated, labelled, reg-
ular expressions e over X the following holds: s=aj...a,, with ay, =$ belongs to the set of
strings denoted by e if and only if there exists an accepting sequence of positions p1,....0y
for e such that a; = symbol(p;), i=1,...,n. (see [YM60], Theorem 3.1).

2.2. Algorithms for the lazy construction of a DFA

Using the notions introduced in the previous section we now formulate an algorithm for the
lazy construction of a deterministic finite automaton for a given set of regular expressions.
The basic idea is to construct a deterministic automaton in which each state corresponds to a
set of positions in the set of regular expressions. In this way, each state may represent sev-
eral ways of recognizing an input string. The initial state of the automaton consists of the
first positions of all the regular expressions. Transitions from the start state, as well as
from any other state, are computed as follows: consider for each symbol a in the alphabet
(or the end marker) the positions that can be reached when recognizing a in the input; the

296

set of positions that can be reached in this way form the (perhaps already existing) state to
which a transition should be made from the original state on input a. The set of positions
that corresponds to a state thus characterizes the progress of all possible accepting se-
quences for input strings with a common head.

In principle, the powerset of all positions in the set of regular expressions should be con-
sidered during the construction of a DFA. The following algorithms only consider the sets
of positions that are really used during this construction. These sets are collected in the set
States. When a state S is added to States, it is unexpanded and expanded(S) = false holds.
A state Se States can be marked as expanded by setting expanded(S) = true.

The DFA that is being constructed is represented by an initial state starr € States and a
transition function Trans : States x X — States.

In standard DFA construction algorithms, a complete DFA is computed for a given reg-
ular expression. In the following lazy algorithm only a Partial DFA (PDFA) is constructed
which is further extended when needed during scanning of given input strings.

First, we give the algorithms for the lazy construction of the start state and for the ex-
pansion of a state.

Algorithm L-CONSTRUCT
Construction of the initial part of the DFA that accepts the language described by a set of
regular expressions.
Input. A set E of terminated, labelled, regular expressions over alphabet Z.
Outpur. A PDFA in which only the start state has been expanded.
Method.
A.start :=\U,e Efirstpos(e)

A.States .= { A.start }
A.Trans =D
return(EXPAND(E, A, A.start))

Algorithm EXPAND
Expansion of a PDFA state.
Input. A set of terminated, labelled, regular expressions E, a corresponding PDFA A, and 2
state S.
Ouwtput. The original PDFA expanded with all states to which § has transitions, and a defi-
nition of these transitions.
Method.
for V ae I\{$)
do

U:=\Y (pe S| symbolp) = a \followpos(p, E)

if U#@ A UeA.States then A States := A.Siates U (U]} fi
ATrans(S,a)=U

od

expanded(S) := true

return(A)

297

The positionsp,q,r andsin § The subsets followpos(p), followpos(q)
with symbol(p) =symbol(q)= followpos(r) and followpos(s) of T
symbol(r)=symbol(s)=a

Figure 5. Positions causing a transition between states S and T on symbol a.

For later reference it is useful to emphasize that the existence of a transition between two
states S and T on alphabet symbol @ may be caused by several positions in S that corre-
spond to the symbol a. State T will contain as subsets the, possibly overlapping, sets of
follow positions for each of these positions in S. This situation is illustrated in Figure 5.

From the definition of EXPAND it follows that a state can never correspond to an empty
set of positions. For convenience, we will assume in the sequel that all automata contain an
error state with the following properties:

1. The error state corresponds to the empty set of positions.

2. The error state is not an accepting state.

3. The transition function is augmented as follows:

(a) for each state, transitions to the error state are added for all characters in X for
which that state has no legal transition.
(b) for all characters in X, the transition function contains a transition from the error
state to itself.
These additions to the generated automata are implicit and will not be shown in the dia-
grams.

Finally, we give the scanning algorithm associated with L-CONSTRUCT. It performs

expansions of needed, unexpanded, states. ’

Algorithm L-SCAN

Simulate a given PDFA on a given input string, incrementally expanding the PDFA when
necessary.

298

Input. A set E of terminated, labelled, regular expressions, a corresponding PDFA A4, and
an input sentence = @j...dy , with a,=$.
Output. true or false (indicating acceptance or rejection of the input string) and a possibly
extended version of A.
Method.
S:=A.start
i=1
whileg; 2$
do
if — expanded(S) then A := EXPAND(E, A, S) fi
S:=ATrans(S, a;)
i=i+1
od
return (FINAL(S), A)

The last state reached during the scanning of an input string determines whether the input
string should be accepted or rejected. A state is accepting if one of its positions corresponds
to the end marker $. This is defined by the following algorithm.

Algorithm FINAL
Determine whether a given state is an accepting state.
Input. A state S.
Output. true or false
Method.
return 3 pe S [symbol(p) = $]

Note that a state may contain several positions with symbol $. This may happen when a
string is recognized by more than one rule in the regular grammar.

3. AN ALGORITHM FOR COMPILING MODULAR REGULAR GRAMMARS

3.1. Modular regular expressions versus modular regular grammars

Before generalizing these lazy scanner generation techniques to the case of modular regular
grammars, we first need a definition of modular regular grammars. It would be natural to
describe them as (module-name, regular expression) pairs. However, it turns out that not
all sub-expressions of a regular expression need to originate from the same module. This
will become clear when discussing named regular expressions in Section 3.3. Therefore,
we choose a method that allows more refined control over the module information and as-
sociate module names with the positions in a (terminated, labelled) regular expression and
not with the regular expression as a whole. We will write module(p) to denote the module
name associated with position p and we will write nap to denote a position p such that
symbol(p)=a and module(p)=m. We will call these regular expressions with associated
module information modular regular expressions. In this section, we will only use sets of
modular regular expressions. In Section 3.3, modular regular grammars will be introduced
and we will show how they can be reduced to sets of modular regular expressions.

299

Figure 7.

Given a modular regular expression e and a list of module names M we can now restrict
expression e to M (notation: e/M) by replacing all ap in e with m ¢ M by the undefined
expression L. We extend the restriction operator / to sets of regular expressions.

The problem we want to solve can now be formulated as follows: given a set of modular
regular expressions E, a partially constructed automaton A for these regular expressions,
and a list of module names M, can we select a part of A that precisely recognizes the lan-
guage defined by E restricted to M?

The simplest method one can imagine to restrict the language accepted by a given DFA is
to use the DFA as it is, but impose restrictions on accepting states according to the current
selection of modules. This method would only require some recomputations on the ac-
cepting states of the DFA.

Consider, for instance, the set of expressions £= { ja1 b2 m$3, ncs4 nds nSe } and the
corresponding DFA A shown in Figure 6 (the border lines of accepting states are shown in
bold face). Choosing the set of modules {m}, E /{m) is then equal to { pai mb2 m$3, L)
={ na1 mb2 m$3 } and the automaton obtained from A by only retaining accepting states
that are labelled with a position in the selection {m} correctly recognizes the language de-
fined by E /{m} (see Figure 7).

However, on closer inspection it turns out that this simple method may be incorrect when
the positions in a single modular regular expression are labelled with different module
names. This is illustrated by the following counter example. Consider

E={(na1 | nbz2) nca nSs }

300

Figure 9.

with corresponding DFA shown in Figure 8. When we restrict E to the single module {n})
we obtain
E/f{n}=((1 | nb2) nc3 nSa }={ab2 nc3 nSse)

but the string ac will (erroneously) be accepted using the simple method of restricting the
accepting states of the DFA corresponding to E. The reason is, of course, that it is not suf-
ficient to require that the accepting position is in the current selection of modules, as long as
it can be reached using transitions that do not belong to that selection, e.g. the transition
from the start state on symbol a. Therefore, we should remove all such invalid transitions
obtaining the DFA shown in Figure 9 (invalid transitions are represented by shaded ar-
TOWS).

Following this second method, we restrict the language accepted by a given DFA by
eliminating all transitions in the DFA that do not correspond to the regular expressions in
the current selection. This method requires the calculation of modifications to the transition
table of the DFA for each new selection of modules.

3.2. Restricting a PDFA to a selection of modules

Given a PDFA A and a list of selected modules M, we have to compute those parts of the
transition table that are still valid in this new selection. We introduce the following notions
to achieve this goal:

(1) The table containing the transitions that are valid in the current selection will be called
SelTrans, it is always a subset of the complete (but perhaps only partially computed)
transition table Trans of A.

(2) With each state S in A we associate an attribute specialized, indicating whether the
valid transitions leaving S have already been recorded in SelTrans. Initially, special-
ized(S) = false holds.

Remains the problem of formulating criteria to decide when a transition between two states
S and T on alphabet symbol a is still valid in the current selection of modules. Our goal is
to restrict the automaton A in such a way that it is equivalent to an automaton A’ that would
have been constructed when using the restricted set of regular expressions right from the
start. In other words a transition should be valid in the restricted automaton A when it
would have been constructed in A’ as well. Looking at the way expansion of states is de

301

fined (see Section 2.2, algorithm EXPAND) we observe that the existence of a transition
between § and T on symbol a implies that

(1) S contains a position p whose symbol a;

(2) T contains some position g in the set of follow positions of p.

In the restricted automaton one should impose the additional restriction that positions p and
q are labelled with module names appearing in the current selection.

Referring to Figure 5 given in Section 2.2, we illustrate the situation in the modular case
in Figure 10. Positions that are labelled with a module in the current selection are indicated
by a black square. A transition between S and T on symbol a is valid in this particular se-
lection, since position g is selected and followpos(q) contains a selected position as well. In
this case, g is the only position that supports this transition! Note that states S and T corre-
spond to states S’ and 7" in automaton A’ that contain only these selected positions.

These ideas are described more precisely in the following algorithm.

Algorithm SPECIALIZE
Input. A set E of terminated labelled regular expressions, a PDFA A, a state S, and a list of
modules M.
Output. A modified version of A in which all valid transitions from state S in the modules
in M have been recorded in A.SelTrans.
Method.
for V ae I\($)
do
if Ape S, gqe A.Trans(S,a)
[symbol(p) = a A module(p)e M A module(q)e M A ge followpos(p,E)])
then A SelTrans(S.a) := A.Trans(S,a) fi
specialized(S) = true
od
return(A)

Remains to be described how specialization and expansion of states interact during scan-
ning. Before actual scanning starts, all states are set to unspecialized!. During scanning
states are encountered that are either not yet expanded (and should be both expanded and
specialized) or expanded but not yet specialized (and should be specialized). The algorithm
is as follows:

Algorithm M-SCAN

Simulate a given PDFA for a given selection of modules on a given input string, incre-
mentally expanding and specializing the PDFA when necessary.

Input. A set E of terminated, labelled, regular expressions, a corresponding PDFA A, a list
of modules M, and an input sentence s= aj...a, , with a,=$.

Output. true or false (indicating acceptance or rejection of the input string) and a possibly
extended version of A.

Unstead of setting all states to unspecialized at the beginning of M-SCAN, it would be more efficient to
do this once in a separate selection operation. Subsequent applications of M- SCAN could then profit from
the gradually increasing number of already specialized states.

302

Method.

for V State € A.States do specialized(State) := false od;

S:=A.start

i=1

whileg; # $

do
if = expanded(S) then specialized(S) := false ; A := EXPAND(E, A, §) fi;
if — specialized(S) then A :=SPECIALIZE(E, A, S, M) fi,
S:= ASelTrans(S, a))
=i+

od

return (M-FINAL(S, M), A)

In the modular case, a state is accepting if one of its positions corresponds to the end
marker $ and that position is part of the current selection. This is defined by the following
algorithm.

Algorithm M-FINAL
Determine whether a given state is an accepting state in a given selection of modules.
Input. A state S and a list of modules M.
Output. true or false
Merhod.
return I peS [symbol(p) =$ A module(p) € M]

The positionsp,q,r andsin § The subsets followpos(p), followpos(q)
with symbol(p) =symbol(q)= followpos(r) and followpos(s) of T
symbol(r)=symbol(s)=a

Figure 10. Positions causing a transition between states S and T on symbol a in the
modular case.

303

The specialization of PDFA A for selection M (denoted by A/M) described by SelTrans has
three interesting properties:
® For each string in the language defined by the restricted set of regular expressions
E/M, the accepting sequence of positions in A/M is identical to the accepting sequence
as it would occur in the new automaton A’ that is constructed independently for the
restricted set of regular expressions E/M.
The above mentioned automaton A’ does not need to occur as sub-automaton of
A/M, since two distinct states S and T in A/M may become effectively equivalent due
to specialization (i.e., after specialization S and T contain the same subset of posi-
tions that are labelled with a module name in the current selection and will thus be-
have identically; they correspond to a single state in automaton A"), but they will re-
main distinct states in A/M.
® Itis difficult to assess the complexity of the operations SPEC/ALIZE and EXPAND.
The latter constructs unions of sets (of positions) and has to perform a complex
membership test to determine whether a newly constructed state already exists, while
the former does no set construction at all but only performs pair-wise comparisons of
set elements. Assuming that set construction is the most expensive operation, we
conjecture that SPECIALIZE is cheaper than EXPAND.

3.3. Modular reguiar grammars
In the previous section we have discussed lexical definitions that have the form of a list of
modular regular expressions. Each position occurring in these expressions is labelled with
both a position name and a name of a module. Now we turn our attention to the complete
modular regular grammars as sketched in Section 1. Such a grammar consists of two parts:
abbreviations and rules. Both abbreviations and rules contain triples of the form
module-name: token-name = regular-expression.
Names appearing in a regular expression should always have been defined by a previous
abbreviation or rule and can always be eliminated by textual substitution. When several
regular expressions e; are associated with one name, we associate with that name a regular
expression containing all expressions ¢; as alternatives. We will now show how a modular
regular grammar of this form can be reduced to a set of modular regular expressions as de-
fined in Section 3.1. We proceed in four stages:

1. Associate module names and positions with all alphabet symbols in the modular reg-
ular grammar.

2. Replace all uses of names in regular expressions by their definition.

3. Terminate all resulting expressions in the rules section with a $ symbol and associate
both the module name preceding the expression and a new position with that $ sym-
bol. When this terminator appears in a state (= set of positions) it will uniquely iden-
tify this rule. This fact can be used to determine the token-name to be associated with
the recognized input string.

4. The set of modular regular expressions obtained in step 3 is the reduced form of the
original modular regular grammar.

Only step 2 is non-trivial and requires some further comments, since what will happen
when a named expression that is not selected is used in a expression that is selected? Intu-
itively, one would like to replace the use of the named expression by _L. It turns out that
this can be achieved by an appropriate definition of textual substitution.

304

Figure 11. DFA corresponding to the selection { M1, M3, M4, M5, M6, M7 }.

Let e be the regular expression associated with some name in a modular, regular gram-
mar E. Define e’ = copy(e) as the labelled regular expression obtained by taking a literal
copy of e, with the exception that each symbol @, appearing in e is replaced by ap, where
p’is a new, unique, position label and we define module(p")=module(p). It is important to
note that the module name associated with each position remains the same.

Using this definition of taking a copy of a regular expression, all named regular expres-
sions can be removed from a grammar by replacing each occurrence of a name by a copy of
its associated expression. The positions occurring in the resulting, expanded, regular ex-
pression may now be labelled with different module names (this possibility was already
mentioned in Section 3.1).

We conclude this section by applying all the techniques described so far to the modular
regular grammar given as example in Figure 1 (see Section 1). In Figure 11, the complete
DFA corresponding to this grammar is show for the selection of modules { M1, M3, M4,

305

MS, M6, M7 }, in others words the modules M2 (that includes the digits 8 and 9 in the defini-
tion of <p1GIT> and M8 (the keyword end) are not selected. The following conventions
have been used in this figure:

® Invalid transitions are (as before) indicated by shaded arrows.

® Potentially accepting states are labelled with the name of the accepting token.

® The abbreviation # ¢ stands for all letters a-z, except the letter c.
Note that all transitions labelled with 8-9 are invalid and that the state that could potentially
recognize end both as a keyword and as an identifier can only recognize it as an identifier in
this particular selection.

4. CONCLUDING REMARKS

In this paper we have presented the algorithms required for the generation of lexical scan-
ners for modular regular grammars. A prototype implementation of these algorithms has
been completed and indicates that the method of selecting a sub-automaton from the large
automaton corresponding to all regular expressions in all modules is superior over the
method of constructing a new automaton for each selection of modules. It is too early to
present a quantitative analysis of the performance of this implementation.

As indicated in Section 1, the modularization of language definitions implies that all parts
of such a definition have to be processed in a modular fashion. In [Rek89], a technique is
sketched for the generation of parsers for modular context-free grammars. It turns out that
the techniques for lazy and incremental program generation as described earlier in
{HKR87a], form a good foundation for modular program generation techniques.

ACKNOWLEDGEMENTS

Jan Rekers made several comments on a draft of this paper. The technique presented here
was inspired by our discussions on modular parser generation. All these methods are ex-
tensions of the lazy/incremental program generation techniques developed in cooperation
with Jan Heering and Jan Rekers.

REFERENCES

[BS87] G. Berry & R. Sethi, “From regular expressions to deterministic automata”,
INRIA Report 649, 1987.

[HKR87a] J. Heering, P. Klint & J. Rekers, “Principles of lazy and incremental program
generation”, Centre for Mathematics and Computer Science, Report CS-
R8749.

[HKR87b] J. Heering, P. Klint & J. Rekers, “Incremental generation of lexical scan-
ners”, Centre for Mathematics and Computer Science, Report CS-R8761.

[MY60] R. McNaughton & H. Yamada, “Regular expressions and state graphs for
automata”, IRE Transactions on Electronic Computers, EC-9 (1960), pp. 38-
47.

[Rek89] J. Rekers, “Modular parser generation”, manuscript, 1989.

